

Retrofitting Collaboration into UIs with Aspects
Li-Te Cheng, Steven L. Rohall, John Patterson, Steven Ross, Susanne Hupfer

IBM Research
Collaborative User Experience Group

Cambridge, Massachusetts

{li-te_cheng,steven_rohall,john_patterson,steven_ross,susanne_hupfer}@us.ibm.com

ABSTRACT
Mission critical applications and legacy systems may be difficult
to revise and rebuild, and yet it is sometimes desirable to retrofit
their user interfaces with new collaborative features without
modifying and recompiling the original code. We describe the
use of Aspect-Oriented Programming as a lightweight technique
to accomplish this, present an example of incorporating presence
awareness deeply into an application’s user interface, and discuss
the implications of this technique for developing CSCW software.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software – reuse
models; H.5.3 [Information Interfaces and Presentation]: Group
and Organization Interfaces – Computer-supported cooperative
work, collaborative computing

General Terms
Design, Human Factors, Languages, Theory.

Keywords
CSCW, groupware, aspect-oriented programming, application
retrofitting, user interface components.

1. INTRODUCTION
It is often desirable to introduce collaborative features, such as
instant-messaging and email, into the user interface of software
(e.g. “contextual collaboration” is an approach that embeds new
collaborative capabilities into familiar non-collaborative
applications [6]), but some applications are not amenable to
revision or reconstruction. Retrofitting collaborative features into
legacy systems, in-house/custom-built software, and mission-
critical applications using conventional approaches may be too
expensive, time-consuming, and risky to be worthwhile.

Ideally, the retrofitting process should have as little impact on the
application as possible, yet it must incorporate the desired set of
collaborative features. In this paper we list the options for
retrofitting, and focus on one promising strategy that embodies
the best qualities of these options: Aspect-Oriented Programming
[7]. We summarize the minimal set of concepts from Aspect-

Oriented Programming needed for retrofitting, and present a
working example of an application retrofitted with this technique
to enable presence awareness, and discuss the implications of this
technique for developing CSCW software applications.

2. LEVELS OF RETROFITTING
Retrofitting can occur at three levels – the application level, the
programming environment level, and the operating system level.
Each level has its own set of options, strengths, weaknesses, and
CSCW-related examples for the application developer to consider.

Retrofitting at the application level enables the developer to
leverage any extensibility offered by the application’s
architecture. The chief benefit is that any collaborative features
that are introduced will exist gracefully within the application.
Ideally, the framework for extension would focus on the
application-specific issues and insulate the developer from
peripheral and low-level details of the operating environment
around the application.

Examples include using application programming interfaces
intended for third-parties to hook in new components (e.g.
Churchill et al. use Microsoft ActiveX application interfaces to
anchor chats inside Word [3]), or creating a proxy service to
intercept and change the standardized protocols for
communication and presentation supported by the application
(e.g. SmartPrinter used a proxy leveraging the printing protocol
used by all applications in their workplace to insert awareness
information on printouts [5]). However, the original architects of
the applications cannot be expected to foresee every future
contingency, and the available application programming
interfaces and standard protocols may be limited or nonexistent.

Retrofitting can also be considered at the programming
environment level: one may be able to exploit the runtime
characteristics of the environment used to create the application –
particularly the dynamic capabilities of the language for the
component responsible for the user interface. Some programming
language environments are flexible, and offer options for
programs to modify themselves at runtime and dynamically load
new modules, without requiring recompilation. The main benefit
here is the potential to significantly customize the behavior of the
application beyond the original design of the application.

Other environments offer some flexibility in manipulating the
language’s runtime libraries for user interfaces and event
handling, without rebuilding the entire application. For example,
through a custom class loader, Flexible JAMM does runtime
replacement of Java’s single-user interface components with
collaborative equivalents [2].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CSCW’04, November 6-10, 2004, Chicago, Illinois, USA.
Copyright 2004 ACM 1-58113-810-5/04/0011...$5.00.

Volume 6, Issue 3 25

A problem with this approach is that not all programming
environments have the needed flexibility. The application being
retrofitted may be coded in a restrictive environment, and have
requirements for strict control over runtime configuration that
may deny modification access to certain runtime libraries. Also,
if well-defined APIs are not available, it may be difficult to
customize or introduce new behaviors into the application. For
example, while it might be easy to replace the default label widget
with a new one by replacing the widget library at runtime,
specifying that only one particular label use the customized label
might not be possible with this technique.

The final level to consider for retrofitting involves diving into the
operating system to trap event calls, capture pixels on the screen,
and hook into the boundary between the application and the
operating system’s services. A significant advantage of this
option is the ability to treat the application like a “black box”.
This is especially useful for old applications whose
documentation and source code may be long lost. Another
consequence of this “application independence” is that the
techniques used to retrofit one application may work for another.

Many typical application-sharing systems take this approach (e.g.
VNC [11]), enabling them to share entire applications on the
desktop. Li and Li, in their survey and in their own system,
discuss how to extend this approach to share only selective pieces
of state [10]. There are a number of drawbacks to the operating
system level approach. While the application becomes a “black
box,” the developer must now focus on the intricacies of the
operating system. The deep semantics and data structures of the
application are also obscured; only events and visible elements of
the user interface are discernable at the operating system level.
Moreover, there may be interference from events and side-effects
from other applications and services running in the operating
system. Thus, intelligent analysis of these discernable events may
be required for seemingly simple application operations.

Each of these levels highlights a diverse array of examples and
suggests desirable characteristics to help retrofitting. The
application level spotlights access to the deep semantics of the
application through clearly defined programming interfaces. The
programming level points out the flexibility afforded by
modifying runtime configurations. The operating system level
showcases the richness of trapping events.

3. ASPECT-ORIENTED PROGRAMMING
Aspect-Oriented Programming, or AOP for short, is an approach
that draws upon the three desirable qualities for retrofitting as
discussed in the previous section. We first provide a brief
introduction to AOP, and elaborate its specific features that
benefit retrofitting.

“Aspects” are special objects that define rules for actions
occurring before, after, and within code. While Object-Oriented
Programming is a methodology for software modularization,
where specific pieces of application functionality are separated
into objects, AOP extends this separation further, by effectively
modularizing calls within objects that are being repeated across
disparate objects into aspects.

A major benefit of this approach is a separation of secondary,
supporting functionality (now expressed as aspect objects) from
the core objects of the application. The core code becomes

simply focused on the core requirements. The rules in the aspects
automatically apply the secondary functionality at runtime. See
Kiczales et al [7] and Laddad [9] for more detailed explanations
of AOP and examples.

In the case of retrofitting, the objects in the application being
retrofitted represent core functionality, and the collaborative
features being introduced would be represented by one or more
aspects. These “collaborative” aspects contain rules indicating
where to retrofit their capabilities into the application.

AOP adds new language-agnostic concepts and has been
implemented in many languages. Three concepts are relevant for
retrofitting: defining and instancing aspects, specifying rules, and
integrating aspects with existing code.

Aspects are declared similarly to how classes are declared in the
host programming language. For the most part, they are no
different from any other object in an object-oriented application,
and have attributes, methods, inheritance, etc. The main
difference is the incorporation of rules, and how they are
instanced. Aspects are not instantiated programmatically – they
only appear when their rules are triggered at runtime.

The rules that tie an aspect to other objects in an application are
defined by conditions, termed pointcuts, and actions, termed
advice. From a retrofitting perspective, creating rules in aspects
is akin to monitoring for desired patterns of events from the
targeted application. Pointcuts actually refer to points or regions
of program execution, which can be expressed as a variety of
object operations, including private or public method calls, object
instantiations, attribute assignments, scoping conditions, and
program flows. Pointcuts can even refer to private calls and
attributes, thus exposing the internal programming interfaces of
the application. Thus, we can leverage inner application semantics
in addition to events passed between the application and the
runtime environment. Pointcuts can also declare context to
capture data from the associated pieces of program execution,
such as parameters passed into methods and the calling object.

Advice are associated with pointcuts, bring in context around
pointcuts, and specify when to apply actions when pointcuts are
encountered. An advice is where collaborative features get
established and invoked in the application.

Finally, there are two ways to introduce aspects into an
application. The first approach is to use an aspect compiler that
compiles the aspect and generates hidden intermediate objects
that express the aspect in the original language of the application.
The intermediate objects use reflection and event hooking to
ensure that pointcuts are established with appropriate advice into
the application, without recompiling the original code. The end
result is a self-sufficient application whose code appears to be in
the original language of the application. The second, known as
“runtime weaving,” is to use a special runtime that dynamically
incorporates the aspects with the targeted application during
execution. These two options are examples of the flexible
runtime configuration characteristic for retrofitting – depending
on the application requirements; one approach may be more
suitable than the other.

26

4. ADDRESS BOOK + BUDDY LIST
We now illustrate an aspect-based technique of retrofitting
collaborative features into an application.

We took a basic address program that was an example Java
application, which we did not write, using the SWT widget library
[4]. The program is a single-user application that lets the user
enter contact information, save and load all contact data, and
conduct searches. A screenshot is seen at the top of Figure 1.

The address book can benefit from awareness information
provided by an instant messaging service. Our final result can be
seen on the bottom of Figure 1. We have the same application,
but now names are decorated with icons denoting online status
such as online, away, and do not disturb. Tooltips over the names
reveal a detailed status message. We did not have to recompile
the original application, and only added one aspect written in
about one hundred lines of code that interacted with the IBM
Lotus Sametime instant messaging toolkit [8].

Our strategy to accomplish the retrofit was threefold. First:
understand the application from its runtime behavior and its
codebase, looking for useful internal application programming
interfaces. Second: identify the pointcut and define advice where
we can initialize the new collaborative feature upon application
startup. Third: identify the pointcut and define advice where we
can establish a foothold into the user interface and add to it.

From understanding the operation of the address book application,
we learned that the address book is represented by an
AddressBook class, which includes an open() method that is
called when the application is starting up, and returns an SWT
Shell object (the widget for the entire application window). Also,
the address book uses a Table widget consisting of TableItem
widgets for each row. Each TableItem contains the fields for

one contact, which are set up using a setText() method. The key
field is the email address which we can use as an identifier to get
online status information from the instant messaging service.
There are also unused methods to set icons and tooltips in the
table.

We then used AspectJ [1], which provides extensions to Java for
AOP, to define an aspect representing instant messaging
awareness information associated with a row entry in the table of
the address book. Figure 2 shows the aspect we created, with the
internals written in pseudo-code for brevity. Sections A and C in
Figure 2 define the pointcuts of interest. Sections B and D define
the advice corresponding to the pointcuts in sections A and C
respectively.

Section A defines a pointcut on any call to the open() method of
the AddressBook class. This captures the moment when the
application is starting up. This is an important moment to allow
us to set things up related to our new collaborative feature.

Section B defines the advice using section A’s pointcut. The
“after” keyword specifies that the advice’s actions will execute
after the pointcut is completed (i.e. after the open() method
returns with something). The “returning(Shell shell)” piece
allows the advice to capture the return value from the call to the
open() method. The returned shell widget gives a parent widget
in which to pop up a login dialog when the advice is triggered.
After obtaining the login information from the dialog, we log into
the instant messaging service, and set up a listener for status
changes. Upon status changes, the listener updates the icon in the
appropriate row of the table using a hashtable that maps email
addresses to rows.

Section C defines a pointcut on any call to the setText() method
of the TableItem widget. This specifies the moment when a row
with contact information is being created or changed. This is an
important moment to set up an awareness icon in the table, and
establish tooltip information. The “target(item)” piece of

Figure 1 –Original address book application (top) and the same
application retrofitted with IM presence icons and tooltips
(buttom)

public aspect LiveName
{

after() returning(Shell shell):
 call(* AddressBook.open(..))
{
 // Display login dialog in shell

// Login to IM System
// Add listener for IM status changes, update icons

 }

 after(TableItem item) :

(target(item) &&
 call(* TableItem.setText(..)))
 {

// Get email from table item
// Get current IM status using email
// Get icon based on IM status

 // Add listener for mouse hover, show IM status text
// Add icon to table item

 }

}

Figure 2 – Pseudo-code showing the aspect responsible for
retrofitting the Address Book application

A

C

B

D

Volume 6, Issue 3 27

the pointcut captures the actual TableItem widget instance calling
the setText() method and associates it with the “item” parameter.

Section D defines the advice using Section C’s pointcut. Again,
the “after” keyword specifies the actions for this advice that are
invoked after the setText() method is completed. The “item”
parameter from the pointcut is passed through to the advice. The
code in the advice extracts the email field from “item”, which is
then used to query the instant messaging system for status
information. The status information is then mapped to
appropriate tooltip and icon information to display in the table
(“item” allows us to access the appropriate methods). The
hashtable used in section B is updated with a mapping between
the email address and the table row.

We then compiled our new aspect, linking in the instant
messaging library and the binary for the address book application.
The final result was an application that operates largely the same
as before, but with a new feature. We did not need to change or
rebuild the original application code.

This implementation can be improved, e.g. we could specify
much more in our aspect. For example, we could extend the
existing context menu with an option to start a chat conversation
from a name. Structurally, instead of concentrating all of our new
functionality in the aspect code, we could also define regular non-
aspect classes encapsulating the awareness functionality, and
reduce our advice actions to calls to these classes. This way, the
aspect is focused on bridging the address book application’s
objects and the objects associated with the new features.

5. CONCLUSIONS
In this paper, we used AOP to retrofit applications with
collaborative features, and presented an example where we did
not have to recompile the original application code.

Unlike other approaches operating at the programming language
level of retrofitting [2], we operated within the confines of the
programming interfaces of the original application, reusing their
existing user interface widgets instead of replacing them entirely.
Also, using AOP, we were able to write code at the application
level and introduce changes in carefully-selected sections of the
application. Like retrofitting at the operating system level, we
can monitor the application’s event flow through pointcut
definitions, but we can use them to take advantage of inner
semantic context such as return types, calling objects and passed
parameters, and invoke advice that leverage the internal
programming interfaces.

Thus, retrofitting with aspects combines desirable qualities found
at the application, programming, and operating system levels.
The new code feels native to the application, leveraging existing
resources and programming interfaces. However, this technique’s
effectiveness hinges upon the first step of our strategy:
understanding the application. Without a priori knowledge about
the application’s workings, it would be difficult to express the
pointcuts to inject new behavior at the appropriate moments of the
application’s operation. Available source code, standards, APIs,
decompilers, and tracers are very useful means of understanding
the application. But some applications may be truly opaque, or
too large and complicated to analyze. This is a problem already

faced by retrofitting at the operating system level, and there is an
opportunity for automated and intelligent tools to help [10].

We only retrofitted at the user interface layer of the application,
but aspects can benefit other layers as well. One strategy is to use
aspects as retrofitting “bridges,” with minimal code that binds the
core application and other frameworks and toolkits specialized for
collaboration infrastructure as well as user interfaces.

Finally, there are other types of collaborative features to explore
besides the example we described here. Enabling synchronous
sharing of applications, adding networked peer-to-peer file
sharing, introducing roles, policies, and access control, and
suppressing, altering, and rerouting the flow of user interface
events are some collaborative features that may be amenable to
aspect-oriented retrofitting.

6. REFERENCES
[1] AspectJ. http://www.eclipse.org/aspectj.
[2] Begole, J., Rosson, M., Shaffer, C. Flexible Collaboration

Transparency: Supporting Worker Independence in
Replicated Application-Sharing Systems. ACM Trans. on
Computer-Human Interaction, 6, 2 (June 1999), 95-132.

[3] Churchill, E., et. al. Anchored Conversations: Chatting in the
Context of a Document. In Proc. of the SIGCHI Conf. on
Human Factors in Computing Systems (CHI 00) (The Hague,
Netherlands, April 1-6). ACM Press, New York, NY, 2000,
454-461.

[4] Eclipse.org. http://fullmoon.torolab.ibm.com/downloads/
drops/R-2.1.2-200311030802/

[5] Grasso, A. and Meunier, J-L. Who Can Claim Complete
Abstinence from Peeking at Print Jobs? In Proceedings of
the 2002 ACM Conf. on Computer Supported Cooperative
Work (CSCW 02) (New Orleans, USA, Nov. 16-20). ACM
Press, New York, NY, 2002, 296-305.

[6] Hupfer, S, Cheng, L., Ross, S., Patterson, J. Introducing
Contextual Collaboration into an Application Development
Environment. In Proceedings of the 2004 ACM Conf. on
Computer Supported Cooperative Work (CSCW 04)
(Chicago, USA, Nov. 6-10). ACM Press, New York, NY,
2004.

[7] Kiczales, G., et. al. Aspect-Oriented Programming. In Proc.
of European Conf. on Object-Oriented Programming
(ECOOP 97) (Jyväskylä, Finnland, June 1997). Springer-
Verlag, Germany, 1997, 220-242.

[8] IBM, Sametime Java Toookit. http://www-136.ibm.com/
developerworks/lotus/products/instantmessaging

[9] Laddad, R. AspectJ in Action. Manning, Greenwich, CT,
2003.

[10] Li, D. and Li, R. Transparent Sharing and Interoperation of
Heterogeneous Single-User Applications. In Proc. of
Computer Supported Cooperative Work (CSCW 02) (New
Orleans, USA, Nov. 16-20). ACM Press, New York, NY,
2002, 246-255.

[11] RealVNC. http://www.realvnc.com

28

